Vector Systems
自己相補型アデノ随伴ウイルス(scAAV)shRNA ノックダウンベクター
Overview
当社の自己相補型アデノ随伴ウイルス(self-complementary adeno-associated virus : scAAV)shRNAノックダウンベクターシステムはin vivoとin vitro条件で広範な哺乳類細胞タイプに対して安定した標的遺伝子のノックダウンを実現します。AAVは抗原性と細胞毒性が低いので多くの動物実験に適しています。
scAAV shRNAノックダウンベクターはE.coliのプラスミドとして作製されます。ベクターがヘルパープラスミドと共にパッケージング細胞に導入されると、ITRのあいだのshRNA発現カセットとウイルスゲノムがウイルスとしてパッケージングされます。shRNAはヒトU6プロモーターから発現され、標的遺伝子mRNAを分解します。
当社のscAAVベクターは野生株AAVゲノムの半分のサイズを持ち、逆方向に相補的な配列をもつ形でウイルスにパッケージングされます。この形状のため、scAAVベクターは従来のssAAVベクターにおいて足かせとなっていた、宿主細胞のDNAポリメラーゼ機構によって相補鎖を新生する過程を省略して分子内で二本鎖ゲノムを形成できます。さらに二本鎖ゲノムの形成を促進させるために、当社のscAAVベクターは3’ITRのTRS(terminal resolution site)が除去されています。この3’ITRの変異によって両端に野生型ITRと中央に変異型ITRを持つ一本鎖ゲノムが作り出されます。2本鎖形成が変異型ITRから始まりウイルスゲノム全体へと拡大することによって、2本鎖ウイルスDNAとして折りたたまれます。
AVVは複製不能でヒトに対して炎症反応などの疾患の原因にほとんどならないために、バイオセーフティレベル1の施設で扱うことができる、非常に実用性が高いシステムです。
自然界から単離された複数のAAV株は、ウイルス表面のカプシドタンパク質の抗原性に基づいた血清型で分類できます。血清型によってウイルスの親和性(感染の組織特異性)が変わります。当社のssAAVベクターおよびscAAVベクターをパッケージングする際には異なるカプシドタンパク質を選択することでウイルスの血清型を変更することができます。当社が提供する血清型は1, 2, 3, 4, 5, 6, 6.2, 7, 8, 9, rh10, DJ, DJ/8, PHP.eB, PHP.S, AAV2-retro and AAV2-QuadYFとなります。AAVの血清型と組織親和性の対応については下記の表をご覧ください。
セロタイプ別
組織別
Serotype | Tissue tropism |
---|---|
AAV1 | 平滑筋, 骨格筋, 中枢神経系, 脳, 肺, 網膜, 内耳, 膵臓, 心臓, 肝臓 |
AAV2 | 平滑筋, 中枢神経系, 脳, 肝臓, 膵臓, 腎臓, 網膜, 内耳, 精巣 |
AAV3 | 平滑筋, 肝臓, 肺 |
AAV4 | 中枢神経系, 網膜, 肺, 腎臓, 心臓 |
AAV5 | 平滑筋, 中枢神経系, 脳, 肺, 網膜, 心臓 |
AAV6 | 平滑筋, 心臓, 肺, 膵臓, 脂肪, 肝臓 |
AAV6.2 | 肺, 肝臓, 内耳 |
AAV7 | 平滑筋, 網膜, 中枢神経系, 脳, 肝臓 |
AAV8 | 平滑筋, 中枢神経系, 脳, 網膜, 内耳, 肝臓, 膵臓, 心臓, 腎臓, 脂肪 |
AAV9 | 平滑筋, 骨格筋, 肺, 肝臓, 心臓, 膵臓, 中枢神経系, 網膜, 内耳, 精巣, 肝臓, 脂肪 |
AAVrh10 | 平滑筋, 肺, 肝臓, 心臓, 膵臓, 中枢神経系, 網膜, 腎臓 |
AAV-DJ | 肝臓, 心臓, 腎臓, 脾臓 |
AAV-DJ/8 | 肝臓, 脳, 腎臓, 脾臓 |
AAV-PHP.eB | 中枢神経系 |
AAV-PHP.S | 末梢神経系 |
AAV2-retro | 脊髄神経 |
AAV2-QuadYF | 内皮細胞, 網膜 |
AAV2.7m8 | 網膜, 内耳 |
Tissue type | Recommended AAV serotypes |
---|---|
平滑筋 | AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh10 |
骨格筋 | AAV1, AAV9 |
中枢神経系 | AAV1, AAV2, AAV4, AAV5, AAV7, AAV8, AAV9, AAVrh10, AAV-PHP.eB |
末梢神経系 | AAV-PHP.S |
脳 | AAV1, AAV2, AAV5, AAV7, AAV8, AAV-DJ/8 |
網膜 | AAV1, AAV2, AAV4, AAV5, AAV7, AAV8, AAV9, AAVrh10, AAV2-QuadYF, AAV2.7m8 |
内耳 | AAV1, AAV2, AAV6.2, AAV8, AAV9, AAV2.7m8 |
肺 | AAV1, AAV3, AAV4, AAV5, AAV6, AAV6.2, AAV9, AAVrh10 |
肝臓 | AAV1, AAV2, AAV3, AAV6, AAV6.2, AAV7, AAV8, AAV9, AAVrh10, AAV-DJ, AAV-DJ/8 |
膵臓 | AAV1, AAV2, AAV6, AAV8, AAV9, AAVrh10 |
心臓 | AAV1, AAV4, AAV5, AAV6, AAV8, AAV9, AAVrh10, AAV-DJ |
腎臓 | AAV2, AAV4, AAV8, AAV9, AAVrh10, AAV-DJ, AAV-DJ/8 |
脂肪 | AAV6, AAV8, AAV9 |
精巣 | AAV2, AAV9 |
脾臓 | AAV-DJ, AAV-DJ/8 |
脊椎神経 | AAV2-retro |
内皮細胞 | AAV2-QuadYF |
当ベクターシステムに関する詳細な情報ついては下記の論文を参照してください
References | Topic |
---|---|
Expert Rev Hematol. 4:539 (2011) | Progress & challenges of scAAV vectors in gene therapy |
Mol Ther. 16:1648 (2008) | Review on advances & applications of scAAV vectors |
Gene Ther. 10:2112 (2003) | Generation of scAAV vectors by mutating AAV terminal repeat |
特長
当社のscAAVベクターシステムはE.coliでの高コピー数複製、高タイターのウイルス作製、広範囲な細胞タイプへの高効率な導入および導入遺伝子の高い発現量を実現します。AAVベクターは高い安全性とパッケージング時にすべてのカプシドタンパク質の血清型を選択できるため、非常に高効率な遺伝子導入を実現できます。
メリット
高効率: 従来のssAAVベクターと異なり、当社のscAAVベクターは宿主細胞のDNAポリメラーゼ機構を必要としないで感染可能なウイルス粒子を生産できます。これによって、ssAAVベクターと比較して短期間で高レベルの遺伝子ノックダウンを達成できます。
安全性: AAVは複製不能であり、ヒトの疾患の原因とならないので、最も安全なウイルスベクターシステムです。
宿主ゲノムの損傷リスクが低い: 宿主細胞への導入後、AAVベクターはエピソームDNAとして細胞核に存在します。宿主ゲノムへの挿入が起こらないので癌化の原因となりうる宿主ゲノムの損傷リスクを減らすことができ、ヒトへのin vivo用途に適しています。
安定したノックダウン効果: AAVゲノムは核内でエピソームDNAとして維持され、U6プロモーターは恒久的にshRNAを発現します。そのため標的遺伝子のノックダウンは長期間にわたって安定しています。
高ウイルスタイター:当社のscAAVベクターは高いタイターのウイルスを作製できます。当社のウイルス作製サービスを利用すれば1013 GC/ml(genome copy per ml)以上が可能です。
幅広い親和性:適切な血清型でウイルスを作製することによってヒト、マウス、ラットなど一般的に使用される哺乳類動物由来の幅広い細胞及び組織タイプに遺伝子を導入できます。ただし、血清型によっては遺伝子導入が難しい細胞タイプがあります。
In vitroとin vivoで有効:培養細胞と生体内の細胞に対しても使用できます。
デメリット
ベクターサイズの限界: scAAVベクターはssAAVベクターの半分のサイズのDNA配列を組み込むことができます。それゆえ、最大で2.2kbまでのDNA配列がベクターに組み込むことができる上限となります。選択マーカーとshRNA配列を組み込むためには十分なサイズですが、デュアル選択マーカーとshRNA配列を組み込むには不十分となります。
特定の細胞タイプへの遺伝子導入が困難:scAVVベクターは適切な血清型を選択することで非増殖細胞を含む数多くの細胞タイプへの遺伝子導入が可能になります。それぞれの血清型は異なる組織親和性がありますが、どの血清型を使っても遺伝子導入が難しい細胞タイプも存在します。
安定したノックダウン効果: AAVゲノムは核内でエピソームDNAとして維持され、U6プロモーターは恒久的にshRNAを発現します。そのため標的遺伝子のノックダウンは長期間にわたって安定しています。しかしながら、これは実験目的に応じてメリットにもデメリットにもなります。
技術的な複雑さ:AVVベクターはパッケージング細胞によるウイルス作製とタイターの正確な計測などの操作が必要になります。従来のプラスミドを使った遺伝子導入と比べてこれらは高い技術の習熟が必要となり、時間もかかります。
基本コンポーネント
5' ITR: 5' inverted terminal repeat. 野生株の5' ITR と3' ITRは基本的に同じ配列を持つ。ウイルスゲノムの両端に逆向きに配置され、ウイルスゲノムの複製起点として機能する。
U6 promoter: ヒトU6 snRNAのプロモーター。RNAポリメラーゼIIIによってshRNAを高レベルで発現する。
Sense, Antisense: 標的配列から設計され、shRNAのヘアピン構造のステム部分を形成する。
Loop: shRNAのヘアピン構造のループ部分を形成するために最適化された配列。
Terminator: shRNAの転写を停止する。
CMV promoter: ヒトCMV immediate earlyプロモーター。マーカー遺伝子を普遍的に発現する。
Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)や視覚化用遺伝子(EGFPなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。
SV40 late pA: SV40(Simian virus 40)のlateポリアデニレーションシグナル。上流マーカー遺伝子の転写を停止する。
3' ITR-Δtrs: AAV 3' ITRのTRS配列を欠損させたもの。この変異によって両端それぞれに野生型ITRと中央に変異型ITRを持つ一本鎖ゲノムが作り出される。2本鎖形成が変異型ITRから始まりウイルスゲノム全体へと拡大することによって、ウイルスDNAの2本鎖への折りたたみが促進される。
Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。
pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。