pUASTattB ショウジョウバエ遺伝子発現ベクター

概要

当社のpUASTattBベクターシステムはバクテリオファージφC31インテグラーゼによるトランスジェニックハエの高効率な作製とGal4誘導型プロモーターによる強力な遺伝子発現制御を実現します。pUASTattBベクターシステムはpUASTと共通点がありますが、遺伝子の導入にP因子トランスポゾンではなくφC31インテグラーゼを利用する点が異なります。

バクテリオファージφC31はattP(phage attachment sites)とattB(bacterial attachment sites)サイトの配列特異的な組み換えを媒介するインテグラーゼです。pUASTattBのattPへの挿入はφC31インテグラーゼに認識されないattL、attRサイトを作り出すために、P因子トランスポゾンによる組み換えとは違い、φC31インテグラーゼによる組み換えは不可逆的になります。加えて、φC31インテグラーゼによる組み換えはattPサイト特異的なので、その他の配列への挿入は起こりません。pUASTattBベクターシステムはゲノムのattP“着地点”サイトをもつ特定のショウジョウバエ株にのみ使用できます。

pUASTattBベクターシステムはE.coliプラスミドとして設計された2つのベクターから構成されています。ひとつめはpUASTattBベクター(またはφC31ドナーベクター)とよばれ、attBサイトと目的遺伝子が組み込まれています。ふたつめはφC31ヘルパープラスミドと呼ばれ、φC31インテグラーゼが組み込まれています。pUASTattBとφC31ヘルパープラスミドがattPサイトをもつ宿主細胞に同時に注入されると、φC31インテグラーゼによるattPとattBの組み換えが起こりpUASTattBが宿主ゲノムへ挿入されます。pUASTattBベクターのmini white遺伝子は目の色を決定し、遺伝子導入が成功したトランスジェニックハエの同定に使われます。

φC31インテグラーゼを宿主ショウジョウバエへ導入する方法はいくつかあります。ひとつめは標的とする細胞にin vitro転写反応によって生産されたmRNAを注入する方法です。ふたつめはφC31ヘルパープラスミドをpUASTattBと共に標的細胞に注入する方法です。みっつめは生殖細胞でφC31インテグラーゼを発現するショウジョウバエ株にpUASTattBを注入する方法があり、高効率な遺伝子挿入ができます。

pUASTattBベクターシステムでは、目的の遺伝子はGal4結合サイトが5つ直列に並んだ5xUASとhsp70 TATAボックスプロモーターをつなげた誘導型プロモーター(5×UAS/mini_Hsp 70)の下流にクローニングされます。GAL4/UASシステムはGal4に依存した発現誘導ができるように設計されています。Gal4タンパク質はUASに結合して転写を制御するため、Gal4非存在下では下流の遺伝子は転写されませんが、Gal4を発現しているショウジョウバエ株との交配よって転写は活性化されます。

 

当ベクターシステムに関する詳細な情報ついては下記の論文を参照してください

References Topic
Development. 118:401 (1993) Development and use of the pUAST inducible promoter system
Proc Natl Acad Sci U S A. 97:5995 (2000)
Proc Natl Acad Sci U S A. 95:5505 (1998)
Description of the φC31 integrase system
Proc Natl Acad Sci U S A. 104:3312 (2007) Use of pUASTattB and germ-line-specific φC31 integrase to construct transgenic Drosophila

特徴

当社のpUASTattBショウジョウバエ遺伝子発現システムはφC31インテグラーゼによる目的遺伝子の高効率なゲノム挿入とGal4による発現誘導を可能にします。当社のベクターはE.coliでの高コピー数複製とトランスジェニックハエの高効率な作製が可能です。

メリット

配列特異的な挿入: φC31インテグラーゼはattPサイトで配列特異的な挿入を引き起こしますが、その他のゲノム配列への挿入は起こりません。そのため宿主の遺伝子を破壊したり、挿入部位の位置効果によって導入した遺伝子の発現が影響を受ける危険を減らすことができます。

高効率:φC31インテグラーゼをもちいた生殖細胞への遺伝子導入はP因子トランスポゾンを利用したpUASTシステムよりも高効率です。

発現誘導が可能:導入された遺伝子はGal4非存在下でほとんど発現しませんが、Gal4が存在すると高レベルで発現します。

高効率:φC31インテグラーゼはP因子トランスポゾンを利用したpUASTシステムよりも高効率な生殖細胞への遺伝子導入を実現します。

デメリット

発現“漏れ“の可能性: Gal4非存在下でも目的の遺伝子が低いレベルで発現することがあります。

技術的な煩雑さ: トランスジェニックハエの作製は胚へのインジェクションやハエの飼育・交配など、高い技術が要求されます。

attPサイトが必要:pUASTattBベクターシステムをもちいたトランスジェニックハエの作製には、あらかじめattPサイトがゲノムに導入された特別な宿主株が必要です。

基本コンポーネント

5×UAS/mini_Hsp70: ショウジョウバエ(Drosophila melanogaster)の熱ショックタンパク質Hsp70の最小プロモーターを5×UASに連結したプロモーター。Gal4によって強力に活性化される。

Kozak: Kozak配列。真核生物での翻訳開始を促進すると考えられているためORFの開始コドンの前に配置される。

ORF: 目的遺伝子のORFをここに配置する。

SV40 terminator: SV40(Simian virus 40)のポリアデニレーションシグナル。上流ORFの転写停止を助ける。

attB site: バクテリオファージφC31インテグラーゼによって認識されるattBサイト。φC31インテグラーゼは宿主ゲノムにあらかじめ導入されているattPサイト特異的にpUASTattBプラスミドを挿入する。

pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。

Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。

mini-white: ショウジョウバエのwhite遺伝子の派生型。ミニホワイト遺伝子は成体ショウジョウバエの目の色に関する優性マーカーであり、white遺伝子変異体をバックグラウンドとした遺伝子導入の成否の判断に使用する。