Vector Systems
標準プラスミド miR30型shRNAノックダウンベクター
概要
標準プラスミドmiR30型shRNAノックダウンベクターシステムは広範な哺乳類細胞タイプで標的遺伝子の発現を高効率的かつ一過的にノックダウンすることができます。当システムは従来のプラスミドベクターを利用して、任意の遺伝子と複数のmiR30型shRNA(shRNAmiR)を含むポリシストロニック発現カセットを哺乳類細胞に導入します。shRNAmiR転写物は宿主細胞のmiRNA経路によって機能性shRNAへと変換されて標的遺伝子mRNAの分解を促進します。
近年はレンチウイルスベクター、アデノウイルスベクター、AAVベクターやPiggyBac等の優れた遺伝子導入法が開発されていますが、従来通りのプラスミドベクターによる遺伝子導入法は技術的に容易であることと多くの細胞タイプにおいて十分な効率が得られるために、現在でも多くのラボで利用されています。プラスミドベクターによる遺伝子導入は一過性であり非常に少数の細胞(大抵は1%以下)でのみプラスミドのゲノムへの挿入が起こります。
U6のようなRNAポリメラーゼⅢプロモーターを利用する従来のshRNAベクターと異なり、miR30型shRNAはRNAポリメラーゼⅡによって発現されます。そのため組織特異性、誘導性、または転写活性の異なるプロモーターなどを利用して、恒久的に発現するU6プロモーターではできなかった実験条件が可能になります。
大きなサイズの転写産物を生産できるRNAポリメラーゼⅡは他のノックダウンベクターシステムにはない利点をもたらします。複数のshRNAmiRsを含んだポリシストロンを転写して、複数のshRNAを細胞内で同時生産することができます。これによって一つの転写産物から複数の標的遺伝子のノックダウンを実行したり、一つの遺伝子の複数部位を標的とすることでノックダウン効率を高めたりすることが可能になります。当社ではシングルshRNAとマルチshRNA発現用ベクターが用意されています。さらに、当ベクターに任意の遺伝子をshRNAmiRsと共にポリシストロンに組み込むことも可能です。この遺伝子をマーカーとして使うことでshRNA転写効率のモニターや遺伝子とshRNAの共発現が必要になる実験に利用できます。
当ベクターシステムに関する詳細な情報ついては下記の論文を参照してください
References | Topic |
---|---|
Cell Rep. 5:1704 (2013) | An Optimized microRNA Backbone for Effective Single-Copy RNAi |
特長
標準プラスミドmiR30型shRNAノックダウンベクターシステムは標的遺伝子の一過的ノックダウンのために最適化されたmiRNAシステムが組み込まれており、かつE.coliでの高コピー数複製と高い遺伝子導入効率を実現しています。また、ベクターが導入された細胞をマーカー遺伝子の発現による薬剤選択もしくは可視化によって選別することができます。任意のプロモーターによって任意の遺伝子と複数shRNAmiRsをポリシストロニック転写産物として発現できます。shRNAmiRsは効率的なshRNA生産と標的遺伝子のノックダウンを実現する、最適化されたmiR30配列を持ちます。
メリット
プロモーターが選択可能: U6のようなRNAポリメラーゼⅢプロモーターを利用するshRNAシステムとは異なり、当システムではRNAポリメラーゼⅡ用プロモーターが採用されています。そのため、組織特異性プロモーターや誘導性プロモーターなどを利用してmirR30型shRNAを発現できます。
複数shRNA同時発現:RNAポリメラーゼⅡは大きなサイズのRNAを転写することができるので、単一プロモーターから複数shRNAmiRをポリシストロンとして発現させることができます。シングルshRNAとマルチshRNA発現用ベクターが用意されています。
レポーター遺伝子の共発現:任意の遺伝子もしくはレポーター遺伝子をshRNAmiRと共にポリシストロンとして発現することができます。レポーター遺伝子はshRNA転写量モニタリングに利用できます。
簡便さ:パッケージングなどが必要なウイルスによる遺伝子導入と比べて、従来のプラスミドベクターによる遺伝子導入法は簡便です。
高レベル発現:従来のプラスミドベクターによる遺伝子導入法はしばしば非常に高いコピー数(数千コピー)を細胞に導入できます。これらの細胞は非常に高い遺伝子の発現量を持ちます。
デメリット
ベクターDNAがゲノムへ挿入されない:従来のプラスミドベクターによる遺伝子導入法はベクターのほとんどがエピソームDNAとして維持されるために、ベクターは細胞内で短い期間のみ維持されます。その結果mir30型shRNAによる標的遺伝子のノックダウンは一過的なものになるので、ノックダウン表現型の長期観察などを必要とする用途には適していません。非常に低い頻度ですが(細胞タイプによって102-106細胞あたり1回)、ベクターの宿主ゲノムへ挿入が起こります。薬剤耐性や蛍光マーカーがプラスミドベクターに組み込まれているならば、薬剤選択やセルソーターによって挿入が起こった細胞を選別できます。
細胞タイプが限定される:プラスミドベクターの細胞への導入効率は細胞タイプに依存します。非増殖細胞は一般的に増殖細胞よりも効率が悪く、プライマリ細胞は不死化細胞株よりも効率が悪くなります。いくつかの細胞タイプ、神経細胞や膵臓β細胞への遺伝子導入は非常に困難になります。プラスミドによる遺伝子導入はin vitro用途に限定され、in vivo用途にはほとんど使用されません。
導入コピー数にばらつきが大きい:細胞あたりに導入されるベクターの平均コピー数は非常に高くなりますが、ばらつきが大きくなります(ある細胞は非常に高コピー数だが、別の細胞は数コピーしかない、等)。一方でウイルスによる遺伝子導入法はこのようなばらつきは小さくなる傾向があります。
基本コンポーネント
シングルmiR30-shRNA 標準プラスミドshRNA ノックダウンベクター
Promoter: 下流の遺伝子とshRNAmiR をポリシストロンとして転写する。U6のようなRNA polymerase III ではなくRNA polymerase IIプロモーターが使われる。
Kozak: Kozak配列。真核生物での翻訳開始を促進すると考えられているためORFの開始コドンの前に配置される。
ORF: 任意の遺伝子もしくはレポーター遺伝子を配置する。shRNA発現モニタリングにも利用可能。
5' miR-30E: 最適化されたヒトmiR30 5’関連配列。shRNAプロセシングと成熟、そしてポリシストロンからの切断分離を促進する。
3' miR-30E: 最適化されたヒトmiR30 3’関連配列。shRNAプロセシングと成熟、そしてポリシストロンからの切断分離を促進する。
miR30-shRNA: ノックダウン標的配列から設計され、shRNAヘアピン構造のステム部分を形成する。
SV40 late pA: SV40(Simian virus 40)のlateポリアデニレーションシグナル。上流遺伝子とshRNAmiR ポリシストロンの転写を停止する。
CMV promoter: ヒトCMV immediate earlyプロモーター。マーカー遺伝子を普遍的に発現する。
Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)や視覚化用遺伝子(EGFPなど)、もしくはデュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。
BGH pA: ウシ成長因子ポリアデニレーションシグナル。上流ORFの転写を停止する。
pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。
Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。
マルチmiR30-shRNA 標準プラスミドshRNA ノックダウンベクター
Promoter: 下流の遺伝子とshRNAmiR をポリシストロンとして転写する。U6のようなRNA polymerase III ではなくRNA polymerase IIプロモーターが使われる。
Kozak: Kozak配列。真核生物での翻訳開始を促進すると考えられているためORFの開始コドンの前に配置される。
ORF: 任意の遺伝子もしくはレポーター遺伝子を配置する。shRNA発現モニタリングにも利用可能。
5' miR-30E: 最適化されたヒトmiR30 5’関連配列。shRNAプロセシングと成熟、そしてポリシストロンからの切断分離を促進する。
3' miR-30E: 最適化されたヒトmiR30 3’関連配列。shRNAプロセシングと成熟、そしてポリシストロンからの切断分離を促進する。
miR30-shRNA#1: ノックダウン標的配列(#1)から設計され、shRNAヘアピン構造のステム部分を形成する。
miR30-shRNA#2: ノックダウン標的配列(#2)から設計され、shRNAヘアピン構造のステム部分を形成する。
miR30-shRNA#3: ノックダウン標的配列(#3)から設計され、shRNAヘアピン構造のステム部分を形成する。
miR30-shRNA#4: ノックダウン標的配列(#4)から設計され、shRNAヘアピン構造のステム部分を形成する。
SV40 late pA: SV40(Simian virus 40)のlateポリアデニレーションシグナル。上流遺伝子とshRNAmiR ポリシストロンの転写を停止する。
CMV promoter: ヒトCMV immediate earlyプロモーター。マーカー遺伝子を普遍的に発現する。
Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)や視覚化用遺伝子(EGFPなど)、もしくはデュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。
BGH pA: ウシ成長因子ポリアデニレーションシグナル。上流ORFの転写を停止する。
pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。
Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。