Vector Systems
標準プラスミドgRNA発現ベクター
概要
CRISPR/Cas9ベクターは新しく開発されたゲノム編集ツールのひとつで、素早く効率的にゲノムの標的DNA配列に変異を導入できます(同様にZFNやTALENなどもよく利用されます)。
Cas9はRNA誘導性DNAヌクレアーゼの一種で、プラスミドやバクテリオファージなど外来遺伝子の侵入を防ぐ原生生物の自然免疫システムの一部です。Cas9は18‐22ntの標的配列と配列特異的な相互作用をするガイドRNA(gRNA)と複合体を形成します。gRNAの標的配列へのハイブリダイゼーションによってCas9はゲノムの標的配列を切断します。
CRISPRによる遺伝子ターゲティングには細胞内で標的配列特異的なgRNAとCas9が共発現している必要があります。Cas9とgRNAをひとつのベクター(all-in-oneベクター)から発現させるか、Cas9とgRNAをそれぞれ独立したベクターから発現させることによって共発現が可能になります。Cas9とgRNAの発現に独立したベクターを使うメリットは、実験目的に応じて様々なgRNAとCas9(野生株Cas9、ニッケース、不活性型Cas9など)を柔軟に組み合わせて使用できる点です。さらに、あらかじめ高レベルかつ安定してCas9を発現している細胞もしくは生体に対して様々な標的配列をもつgRNA発現ベクターを導入できます。この方法ならば、それぞれのgRNAが同じ細胞もしくは生体に対してどのくらいの遺伝子ターゲティング効率を持っているのかを比較検討できます。
当社の標準プラスミドgRNA発現ベクターは従来の遺伝子導入法を使用して高い効率で哺乳類動物細胞にgRNAを導入できます。近年はレンチウイルスベクター、アデノウイルスベクター、AAVベクターやPiggyBac等の優れた遺伝子導入法が開発されていますが、従来通りの方法が技術的に容易であることと多くの細胞タイプにおいて十分な効率が得られるために、現在でも多くのラボで利用されています。標準プラスミドベクターによる遺伝子導入は一過性であり非常に少数の細胞(大抵は1%以下)でのみプラスミドのゲノムへの挿入が起こります。
標準プラスミドgRNA発現ベクターは実験目的に応じてシングルgRNA発現用とデュアルgRNA発現用のどちらかを選択できます。シングルgRNA発現ベクターはgRNA発現用のヒトU6プロモーターをひとつ、デュアルgRNA発現ベクターはふたつ持ちます。シングルgRNA発現ベクターは遺伝子ノックアウトなどの従来のCRISPRゲノム編集用途に利用され、デュアルgRNA発現ベクターは対となるゲノムサイトを同時に標的とする必要がある用途に利用されます。使用用途として次のようなケースがあります。1)標的サイトに対してペアとなるgRNAとhCas9ニッケース変異体(hCas9-D10A)を使用して、二本鎖DNAのそれぞれの鎖にニック(一本鎖切断)を入れてDSB(double strand break:二本鎖切断)を起こしてゲノム編集を実行する。2)対となるgRNAペアを利用して2ヵ所のDSBを作り出し、そのあいだの配列の欠失を作り出す。3)2つのgRNAによる2つの遺伝子の同時編集。
当ベクターシステムに関する詳細な情報ついては下記の論文を参照してください
References | Topic |
---|---|
Science. 339:819 (2013) | Description of genome editing using the CRISPR/Cas9 system |
Cell. 154:1380–9 (2013) | Use of Cas9 D10A double nicking for increased specificity |
Science 339:823 (2013) | CRISPR/Cas9 targeting using regular plasmid gRNA expressing vectors |
Plos One. 12: e0187236 (2017) | CRISPR/Cas9 vectors for dual gRNA expression |
特長
当社の標準プラスミドgRNA発現ベクターはE.coliでの高コピー数複製と高い遺伝子導入効率を実現します。当ベクターで形質転換された細胞はマーカー遺伝子によって薬剤選択もしくは可視化できます。標準プラスミドgRNA発現ベクターはヒトU6プロモーターによって高レベルかつ恒久的なgRNAを発現し、Cas9ヌクレアーゼと組み合わせることで高効率なCRISPR遺伝子ターゲッティングを可能にします。また、シングルgRNAもしくはデュアルgRNAを発現できるベクターを実験目的によって選択できます。
メリット
柔軟性:当社の標準プラスミドgRNA発現ベクターは実験目的に応じて多様なCas9バリアント(ヌクレアーゼ、ニッケース、不活性型)と組み合わせて使用できます。さらに、シングルgRNAもしくはデュアルgRNAを発現できるベクターを標的サイトの数に応じて選択できます。
簡便さ:パッケージングなどが必要なウイルスによる遺伝子導入と比べて、従来のプラスミドベクターによる遺伝子導入は簡便です。
高レベル発現:従来のプラスミドによる遺伝子導入法は細胞への非常に高コピー数(数千コピー)の遺伝子導入が可能なため、遺伝子の高レベル発現が実現できます。
デメリット
ベクターDNAがゲノムへ挿入されない:従来のプラスミドによる遺伝子導入はベクターのほとんどがエピソームDNAとして維持されるために一過性になります。しかし、非常に低い頻度ですが(細胞タイプによって102-106細胞あたり1回)宿主ゲノムへ挿入が起こります。薬剤耐性や蛍光マーカーがプラスミドベクターに組み込まれているならば、薬剤選択やセルソーターによって挿入が起こった細胞を選別できます。
細胞タイプが限定される:標準プラスミドgRNA発現ベクターの細胞への導入効率は細胞タイプに依存します。非増殖細胞は一般的に増殖細胞よりも効率が悪く、プライマリ細胞は不死化細胞株よりも効率が悪くなります。いくつかの細胞タイプ、神経細胞や膵臓β細胞への遺伝子導入は非常に困難になります。プラスミドによる遺伝子導入はin vitro用途に限定され、in vivo用途にはほとんど使用されません。
非均一な遺伝子導入:細胞あたりに導入されたベクターの平均コピー数は非常に高くなりますが、ばらつきが大きくなります(ある細胞は非常に高コピー数ですが、別の細胞は数コピーしかない、等)。ウイルスによる遺伝子導入法はこのようなばらつきは小さくなる傾向があります。
PAMが必要:CRISPR/Cas9システムはgRNA標的配列の3’末端のすぐ隣にPAMと呼ばれる配列が必要です。
基本コンポーネント
標準プラスミド シングルgRNA発現ベクター
U6 Promoter: ヒトU6 snRNAのプロモーター。small RNAの転写をするRNAポリメラーゼIIIによってgRNAを高レベルで発現する。
gRNA: 使用されるCas9バリアントに応じたgRNA
Terminator: gRNAの転写を停止する。
hPGK promoter: ヒトphosphoglycerate kinase 1 遺伝子プロモーター。下流のマーカー遺伝子を遍在的に発現する。
Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)、視覚化用遺伝子(EGFPなど)、デュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。
SV40 late pA: SV40(Simian virus 40)のlateポリアデニレーションシグナル。上流マーカー遺伝子の転写を停止する。
Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。
pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。
標準プラスミド デュアルgRNA発現ベクター
U6 Promoter: ヒトU6 snRNAのプロモーター。small RNAの転写をするRNAポリメラーゼIIIによってgRNAを高レベルで発現する。
gRNA #1: 使用されるCas9バリアントに応じたgRNA#1。
gRNA #2: 使用されるCas9バリアントに応じたgRNA#2。
Terminator: gRNAの転写を停止する。
hPGK promoter: ヒトphosphoglycerate kinase 1 遺伝子プロモーター。下流のマーカー遺伝子を遍在的に発現する。
Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)、視覚化用遺伝子(EGFPなど)、デュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。
SV40 late pA: SV40(Simian virus 40)のlateポリアデニレーションシグナル。上流マーカー遺伝子の転写を停止する。
Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。
pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。