標準プラスミドTet誘導性遺伝子発現ベクター

概要

ベクタービルダー社の標準プラスミドTet誘導性遺伝子発現ベクターは標準的なプラスミドベクターにTet誘導性遺伝子発現システムを組み合わせ、簡便な遺伝子導入法を使用して哺乳類動物細胞にテトラサイクリン誘導性発現カセットを導入できます。

Tet-On誘導性遺伝子発現システムは哺乳類細胞で目的遺伝子の発現タイミングを制御できる強力なツールです。当社のTet-On誘導性遺伝子発現ベクターはテトラサイクリン(もしくはドキシサイクリンなどのアナログ)非存在条件下でのほぼ完全な遺伝子発現抑制と、テトラサイクリンの添加に応じた目的遺伝子の強力かつ素早い発現誘導を実現します。当システムはテトラサイクリン非存在下のtTSタンパク質による能動的な発現抑制効果とテトラサイクリン存在下のrtTAタンパク質による強力な発現誘導効果が組み合わされています。TetR(Tet抑制タンパク質)とKRAB-AB(Kid1タンパク質の転写抑制ドメイン)の融合タンパク質であるtTSはテトラサイクリン非存在条件でTRE(tetracycline-responsive element)プロモーターに結合して遺伝子の転写を抑制します。一方で、Tet抑制タンパク質の変異体とVP16(単純ヘルペスウイルスVP16タンパク質の転写活性化ドメイン)との融合タンパク質であるrtTAはテトラサイクリン存在条件でTREプロモーターに結合して遺伝子の転写を活性化します。

当社の標準プラスミドTet誘導性遺伝子発現ベクターはTREプロモーターによって発現される目的遺伝子の発現カセットが組み込まれています。しかし、テトラサイクリン非存在条件での発現漏れを最小限に抑え、テトラサイクリン存在条件の発現誘導をするためには、独立したヘルパープラスミドからTREに結合する調節タンパク質tTSとrtTAが供給される必要があります。

当ベクターの哺乳類細胞への導入は従来の遺伝子導入法を利用しています。近年はレンチウイルスベクター、アデノウイルスベクター、AAVベクターやPiggyBac等の優れた遺伝子導入法が開発されていますが、従来通りのプラスミドベクターによる遺伝子導入法は技術的に容易であることと多くの細胞タイプにおいて十分な効率が得られるために、現在でも多くのラボで利用されています。プラスミドベクターによる遺伝子導入は一過性であり非常に少数の細胞(大抵は1%以下)でのみプラスミドのゲノムへの挿入が起こります。

当ベクターシステムに関する詳細な情報ついては下記の論文を参照してください

References Topic
Science. 268:1766-9 (1995) Development of rtTA
J Gene Med. 1:4-12 (1999) Development of tTS

特長

当社の標準プラスミドTet誘導性遺伝子発現ベクターはTet調節タンパク質tTSとrtTAを共発現することによって、テトラサイクリン非存在条件でほぼ完全な遺伝子発現抑制とテトラサイクリン添加に応答した強力で素早い発現誘導を実現します。当ベクターはE.coliでの高コピー数複製と多くの哺乳類細胞株に対する高い導入効率を実現しています。

メリット

高レベル発現: TREプロモーターは誘導条件下で高レベルの遺伝子発現を可能にします。プラスミドによる遺伝子導入はしばしば非常に高いコピー数(数千コピー)が細胞に導入されることにより、高い発現量をもたらします。

簡便さ:プラスミドベクターは従来の方法によって細胞に導入されます。パッケージング操作などが必要なウイルスと比べると非常に簡便です。

大きなサイズDNAが許容可能: 当社のベクターは全体で~30kbのDNA配列を扱うことができます。当ベクターのバックボーン部分は3kbほどですので、残りを任意の目的で使用することができます。

デメリット

ベクターDNAがゲノムへ挿入されない:従来のプラスミドベクターによる遺伝子導入法はベクターのほとんどが宿主ゲノムへ挿入されずにエピソームDNAとして維持されるために、ベクターは細胞内で短い期間のみ維持されます。非常に低い頻度ですが(細胞タイプによって102-106細胞あたり1回)、ベクターの宿主ゲノムへ挿入が起こります。薬剤耐性や蛍光マーカーがプラスミドベクターに組み込まれているならば、薬剤選択やセルソーターによって挿入が起こった細胞を選別できます。

使用できる細胞タイプが限定される:細胞タイプによってベクターの導入効率は大きく異なるので、利用できる細胞タイプは限定されます。一般的に非増殖細胞は増殖細胞よりも形質転換効率は低く、プライマリ細胞は不死化細胞株よりも形質転換が困難です。神経細胞や脾臓β細胞などの形質転換は非常に難しくなります。加えて、ベクターの導入はin vitro実験に限定され、in vivo用途にはほとんど利用されません。

導入コピー数にばらつきが大きい:細胞あたりに導入されるベクターの平均コピー数は非常に高くなりますが、ばらつきが大きくなります(ある細胞は非常に高コピー数だが、別の細胞は数コピーしかない、等)。一方でウイルスによる遺伝子導入法はこのようなばらつきは小さくなる傾向があります。

基本コンポーネント

promoter: テトラサイクリン応答性プロモーター。

Kozak: Kozak配列。真核生物での翻訳開始を促進すると考えられているためORFの開始コドンの前に配置される。

ORF: 発現させたい目的遺伝子。

SV40 late pA: SV40(Simian virus 40)のlateポリアデニレーションシグナル。目的遺伝子の転写を停止する。

CMV promoter: ヒトCMV immediate earlyプロモーター。マーカー遺伝子を普遍的に発現する。

Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)や視覚化用遺伝子(EGFPなど)、もしくはデュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。

BGH pA: ウシ成長因子ポリアデニレーションシグナル。マーカー遺伝子の転写を停止する。

pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。

Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。

マイベクターをデザインする  デザインサポートを依頼する