Vector Systems
PiggyBac Tet誘導性遺伝子発現ベクター
概要
PiggyBac Tet誘導性遺伝子発現ベクターはベクタービルダー社の高効率piggyBacベクターシステムとTet誘導性遺伝子発現システムを組み合わせ、トランスフェクションによって宿主細胞ゲノムへのTet誘導性遺伝子発現カセットの恒久的な挿入を可能にします。
Tet-On誘導性遺伝子発現システムは哺乳類細胞で目的遺伝子の発現タイミングを制御できる強力なツールです。当社のTet-On誘導性遺伝子発現ベクターはテトラサイクリン(もしくはドキシサイクリンなどのアナログ)非存在条件下のほぼ完全な遺伝子発現抑制とテトラサイクリンの添加に応じた目的遺伝子の強力かつ素早い発現誘導を実現します。当システムはテトラサイクリン非存在下のtTSタンパク質による能動的な発現抑制効果とテトラサイクリン存在下のrtTAタンパク質による強力な発現誘導効果が組み合わされています。TetR(Tet抑制タンパク質)とKRAB-AB(Kid1タンパク質の転写抑制ドメイン)の融合タンパク質であるtTSはテトラサイクリン非存在条件でTREプロモーターに結合し、遺伝子の転写を抑制します。一方で、Tet抑制タンパク質の変異体とVP16(単純ヘルペスウイルスVP16タンパク質の転写活性化ドメイン)との融合タンパク質であるrtTAはテトラサイクリン存在条件でTREプロモーターに結合して遺伝子の転写を活性化します。
当社のpiggyBac Tet誘導性遺伝子発現ベクターには、TREプロモーターによって発現される目的遺伝子を含む誘導性遺伝子発現カセットが組み込まれています。しかし、テトラサイクリン非存在条件での発現漏れを最小限に抑え、テトラサイクリン存在条件で発現誘導をするためには、独立したヘルパープラスミドからTREに結合する調節タンパク質tTSとrtTAが供給される必要があります。
PiggyBac誘導性遺伝子発現システムは2種類のプラスミドベクター、トランスポゾンプラスミドとトランスポゼース(PBase)発現ヘルパープラスミドから構成されます。トランスポゾンプラスミドはTR(Terminal Repeat)のペアによって挟まれた転移領域を持ちます。テトラサイクリン応答因子(TRE)プロモーター下流で目的遺伝子を発現するテトラサイクリン誘導性遺伝子発現カセットはITRのあいだにクローニングされています。PBaseとpiggyBacトランスポゾンプラスミドが目的細胞に同時にデリバリーされると、PBaseがトランスポゾンプラスミド上の両末端のITRを認識し、宿主ゲノム中のTTAA配列にITRと目的遺伝子を含む領域を組み込みます。トランスポゼース(PBase)は、1)一過的なヘルパープラスミドのトランスフェクションもしくは、2)IVT (in vitro transcribed) PBase mRNAを目的細胞へマイクロインジェクションする、2通りの方法でトランスポゾンを目的細胞にデリバリーできます。どちらの方法でも、トランスポゼースは短い間のみ発現します。ヘルパープラスミドの消失もしくはPBase mRNAの分解によってゲノムに挿入されたトランスポゾンは安定化します。
PiggyBacは、カット&ペースト型のクラスIIトランスポゾンに分類され、自己コピーを残さずに転移します(クラスIトランスポゾンは、コピー&ペースト型で、自己コピーを残して転移します)。ヘルパープラスミドを再び導入することにより、ゲノムに痕跡を残すことなくpiggyBacトランスポゾンを取り除くことができます。
当ベクターシステムに関する詳細な情報については下記の論文を参照してください
References | Topic |
---|---|
Mol Cell Biochem. 354:301 (2011) | Review on the PiggyBac system |
Cell. 122:473 (2005) | Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice |
Science. 268:1766-9 (1995) | Development of rtTA |
J Gene Med. 1:4-12 (1999) | Development of tTS |
特長
当社のpiggyBac Tet誘導性遺伝子発現ベクターは、Tet調節タンパク質tTSとrtTA存在下で、テトラサイクリン非存在条件下の目的遺伝子のほぼ完全な発現抑制とテトラサイクリン添加に応答した強力かつ素早い発現誘導を可能にします。PiggyBac Tet誘導性遺伝子発現ベクターとヘルパープラスミドはE.coliでの高コピー数複製、広範な標的細胞へ高効率なベクター導入および高レベルの遺伝子発現を可能にします。
メリット
高レベル発現:誘導条件でTREプロモーターは目的遺伝子を非常に高いレベルで発現できます。
恒久的なベクターDNAの挿入: 従来の方法で宿主細胞へ導入されたベクターDNAはほとんどが時間経過とともに失われます。この問題は増殖速度の速い細胞では特に顕著になります。piggyBacトランスポゾンプラスミドとヘルパープラスミドを使用した遺伝子導入法ならば、トランスポゾンを利用したベクターDNAの宿主ゲノムへの挿入によって恒久的な目的遺伝子の導入が可能です。
簡便さ:PiggyBac Tet誘導性遺伝子発現ベクターは従来の方法によって細胞に導入されます。パッケージング操作が必要なウイルスと比べると非常に簡便です。
大きなサイズDNAが許容可能: 当社のベクターは全体で~30kbのDNA配列を扱うことができます。当ベクターのバックボーン部分(トランスポゾン関連)は3.0kbほどを占め、残りを任意の目的で使用することができます。
デメリット
細胞タイプが限定される:PiggyBacベクターの細胞への導入効率は細胞タイプに依存します。一般的に非増殖細胞は増殖細胞よりも導入効率が悪くなり、プライマリ細胞は不死化細胞株よりも効率が悪くなります。いくつかの細胞タイプ、神経細胞や膵臓β細胞への遺伝子導入は非常に困難になります。くわえて、プラスミドによる遺伝子導入はin vitro用途に限定され、in vivo用途に使用されることは稀です。これらの制限はpiggyBacシステムにも当てはまります。
基本コンポーネント
5' ITR: 5' inverted terminal repeat。piggyBacトランスポゼースは2つのITR(5' ITR と3' ITR )を認識してITRとそのあいだのDNA配列を宿主ゲノムへ挿入する。
Promoter: 目的遺伝子の発現用TREプロモーター。
Kozak: Kozak配列。真核生物での翻訳開始を促進すると考えられているためORFの開始コドンの前に配置される。
ORF: 発現させたい目的遺伝子。
rBG pA: ラビットβ-グロブリンポリアデニレーションシグナル。目的遺伝子の転写を停止する。
CMV promoter: ヒトCMV immediate earlyプロモーター。マーカー遺伝子を普遍的に発現する。
Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)や視覚化用遺伝子(EGFPなど)、もしくはデュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。
BGH pA: ウシ成長因子ポリアデニレーションシグナル。マーカー遺伝子の転写を停止する。[廣瀬1]
3' ITR: 3' inverted terminal repeat.
Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。
pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。