レンチウイルスmiR30型shRNAノックダウンベクター

概要

レンチウイルスmiR30型shRNAノックダウンベクターシステムは広範な哺乳類細胞タイプで標的遺伝子の発現を高い効率でノックダウンすることができます。ウイルスゲノムが逆転写されて恒久的に宿主ゲノムへ挿入されると、遺伝子とmiR30型shRNAを含んだポリシストロンが発現されます。shRNAmiR転写物は宿主細胞のmiRNA経路によって機能性shRNAへと変換されて標的遺伝子mRNAの分解を促進します。

Learn more >>

U6のようなRNAポリメラーゼⅢプロモーターを利用する従来のshRNAベクターと異なり、miR30型shRNAはRNAポリメラーゼⅡによって発現されます。そのため組織特異性、誘導性、または転写活性の異なるプロモーターなどを利用して、恒久的に発現するU6プロモーターではできなかった実験条件が可能になります。

大きなサイズの転写産物を生産できるRNAポリメラーゼⅡは他のノックダウンベクターシステムにはない利点をもたらします。複数のshRNAmiRsを含んだポリシストロンを転写して、複数のshRNAを細胞内で同時生産することができます。これによって一つの転写産物から複数の標的遺伝子のノックダウンを実行したり、一つの遺伝子の複数部位を標的とすることでノックダウン効率を高めたりすることが可能になります。当社ではシングルshRNAとマルチshRNA発現用ベクターが用意されています。さらに、当ベクターに任意の遺伝子をshRNAmiRsと共にポリシストロンに組み込むことも可能です。この遺伝子をマーカーとして使うことでshRNA転写効率のモニターや遺伝子とshRNAの共発現が必要になる実験に利用できます。

当社のレンチウイルスベクターはウイルスのパッケージングや感染に必要になる遺伝子群が取り除かれています。これらの遺伝子は代わりにヘルパープラスミドから提供されます。そのためレンチウイルスベクターによって生産されるウイルスは複製不能(細胞に感染はできるが複製はできない)であり、安全性が保障されています。

当社のレンチウイルスの概要ついては「ベクターシステムの解説」のレンチウイルス発現ベクターの項を参照してください。レンチウイルスmiR30型shRNAノックダウンベクターについての詳細な情報については下記の論文を参照してください。

References Topic
Cell Rep. 5:1704 (2013) An Optimized microRNA Backbone for Effective Single-Copy RNAi
Show less

特徴

当社のレンチウイルスmiR30型shRNAノックダウンベクターは第三世代レンチウイルスベクターを基に設計され、最適化されたマイクロRNAシステムが組み込まれています。E.coliでの高コピー数複製、高タイターのウイルス作製、広範な細胞タイプへの高い遺伝子導入効率および宿主ゲノムへの挿入効率を実現します。任意のプロモーターによって任意の遺伝子と複数shRNAmiRsをポリシストロニック転写産物として発現できます。shRNAmiRsは効率的なshRNA生産と標的遺伝子のノックダウンを実現する、最適化されたmiR30配列を持ちます。

実験による検証

当社のレンチウイルスmiR30型shRNAノックアウトベクターは高効率な遺伝子ノックダウンと遺伝子発現が可能です(図1)。

図1 レンチウイルスmiR30型shRNAベクターによるEGFPノックダウンとmCherry発現。

(A) CMVプロモーターを持つmCherry発現カセットとmiR30型shRNA(スクランブルコントロールとEGFPターゲティング)が組み込まれたレンチウイルスベクターをパッケージングした。EGFPを発現するHEK293T細胞にmiR30型shRNAレンチウイルスを感染させた。薬剤選択後、EGFPとmCherrry発現を蛍光顕微鏡とフローサイトメトリーによって観察した。(B) 非感染細胞とmCherry-shRNA[スクランブル]レンチウイルスに感染した細胞と比較して、mCherry-shRNA[EGFP]レンチウイルスに感染した細胞は、フローサイトメトリーによる蛍光測定の中央値において顕著にGFP発現が減少している(P<0.001)。非感染細胞は赤色蛍光をもたない一方、miR30型shRNAレンチウイルス(スクランブルとEGFPターゲッティングのどちらか)が感染した細胞には強いmCherry発現が観察される。

メリット

プロモーターが選択可能: U6のようなRNAポリメラーゼⅢプロモーターを利用するshRNAシステムとは異なり、当システムではRNAポリメラーゼⅡ用プロモーターが採用されています。そのため、組織特異性プロモーターや誘導性プロモーターなどを利用してmirR30型shRNAを発現できます。

複数shRNA同時発現:RNAポリメラーゼⅡは大きなサイズのRNAを転写することができるので、単一プロモーターから複数shRNAmiRをポリシストロンとして発現させることができます。シングルshRNAとマルチshRNA発現用ベクターが用意されています。

レポーター遺伝子の共発現:任意の遺伝子もしくはレポーター遺伝子をshRNAmiRと共にポリシストロンとして発現することができます。レポーター遺伝子はshRNA転写量モニタリングに利用できます。

恒久的なノックダウン:レンチウイルスの宿主ゲノムへの挿入は不可逆的に起こります。そのため標的遺伝子のノックダウンは安定かつ恒久的なものになり、特定の実験用途にとって重要な利点となります。例えば、shRNAノックダウンによるin vivo, in vitro表現型の長期間にわたる観察が可能になります。ノックダウンベクターに蛍光マーカーが組み込まれているならば、レンチウイルスゲノムの挿入コピー数が異なる(異なるノックダウンのレベルを持つと想定される)細胞をFACS使って蛍光強度に応じて選別することによって様々なノックダウンレベル、様々な表現型をもつクローンを単離することもできます。

高ウイルスタイター:当社のベクターは非常に高いタイターのウイルスを作製できます(当社のウイルス作製サービスを利用すれば>108 TU/mlが可能)。このレベルのタイターならば適量のウイルス上清を使うことで100%近い遺伝子導入効率が得られます。

非常に幅広い親和性:当社のウイルスパッケージングシステムはVSV-Gエンベロープタンパク質をウイルス表面に追加してあるので幅広い親和性を実現しています。その結果、すべての一般的な哺乳類細胞といくつかの非哺乳類細胞への遺伝子導入が可能です。さらに、ほとんどの哺乳類細胞タイプ(増殖・非増殖細胞、プライマリ細胞、接着・非接着細胞)に遺伝子を導入することも可能です。レンチウイルスベクターはアデノウイルスベクター(いくつかの細胞タイプへの形質転換効率が低い)やMMLVレトロウイルスベクター(非増殖細胞の形質転換が困難)よりも広範な親和性を持つので、従来通りの遺伝子導入法では難しかった神経細胞もレンチウイルスベクターならば確実に遺伝子導入できます。

導入コピー数にばらつきが少ない:従来のプラスミドベクターによる遺伝子導入法は導入ベクターコピー数が細胞ごとに大きなばらつきが生じますが、一般的にウイルスによる遺伝子導入は導入ベクターコピー数が比較的に均一になります。

In vitroとin vivoで有効:レンチウイルスベクターは培養細胞と生体の両方に対して効果的です。

安全性:当ベクターの安全性はふたつの点から保証されます。ひとつめはウイルスのパッケージングと感染に必要な遺伝子群がヘルパープラスミドに移されていること、ふたつめは5' LTR-ΔU3はプロモーター活性をもたないので感染時にウイルスRNAが転写されません。そのために、複製可能なウイルスが発生する可能性はなく、当社のベクターを使用することによる健康へのリスクは最小限になります。

デメリット

プロモーターに起因する問題:プロモーター活性とshRNA発現レベルおよびノックダウン効率には強い相関性があります。多くのRNA polymerase IIプロモーターはU6プロモーターと比較してshRNA発現レベルが低いためにノックダウン効率の低下がみられます。

技術的な複雑さ:レンチウイルスベクターはパッケージング細胞によるウイルス作製とタイターの正確な計測などの操作が必要になります。従来のプラスミドを使った遺伝子導入と比べてこれらは高い技術の習熟が必要となり、時間もかかります。

恒久的なノックダウン:レンチウイルスの宿主ゲノムへの挿入は不可逆的に起こります。これは実験目的に応じてメリットにもデメリットにもなります。例えば恒久的プロモーターが使用されている場合、標的遺伝子がノックダウンされると再活性化することは非常に困難になります。

基本コンポーネント

レンチウイルス シングルmiR30型shRNAノックダウンベクター

RSV promoter: ラウス肉腫ウイルスプロモーター。ウイルスRNAを転写する。その後ウイルスRNAはウイルスにパッケージングされる。

5’LTR-ΔU3 : HIV-1の5‘LTR(long terminal repeat)に欠損を起こしたもの。レンチウイルス野生株の5‘LTRと3' LTRは相同配列をもつ。5‘LTRと3‘LTRはウイルスゲノムの両端に同じ向きで配置される。ウイルスゲノムの挿入過程に3‘LTRの配列は5‘LTRに上書きされる。LTRはプロモーターとポリアデニレーションシグナルの両方の機能があり、野生株では5‘LTRはウイルスゲノムを転写するプロモーターとして、3‘LTRは転写終了させるためのポリアデニレーションシグナルとして機能する。当社のベクターでは、5' LTR-ΔU3はウイルスの転写因子TatがLTRのプロモーターを活性化するために必要な配列が欠損している。しかしながら、5' LTR-ΔU3 上流のRSVプロモーターが代わりにプロモーターとして機能するため、この欠損はパッケージング時のウイルスRNAの生産に影響しない。

Ψ: ウイルスRNAのパッケージングに必要なHIV-1パッケージングシグナル。

RRE: HIV-1 Rev response element。ウイルスRNAのパッケージング時のRevタンパク質によるウイルスRNAの核外輸送に必要。

cPPT: HIV-1 Central polypurine tract。細胞感染中にウイルスゲノムの核内輸送を促進させるためのDNAフラップを形成する。ベクターの宿主ゲノムへの挿入効率を上昇させ、形質転換効率を高める。

Promoter: 下流の遺伝子とshRNAmiR をポリシストロンとして転写する。U6のようなRNA polymerase III ではなくRNA polymerase IIプロモーターが使われる。

Kozak: Kozak配列。真核生物での翻訳開始を促進すると考えられているためORFの開始コドンの前に配置される。

ORF: 任意の遺伝子もしくはレポーター遺伝子を配置する。shRNA発現モニタリングにも利用可能。

5' miR-30E: 最適化されたヒトmiR30 5’関連配列。shRNAプロセシングと成熟、そしてポリシストロンからの切断分離を促進する。

3' miR-30E: 最適化されたヒトmiR30 3’関連配列。shRNAプロセシングと成熟、そしてポリシストロンからの切断分離を促進する。

miR30-shRNA: ノックダウン標的配列から設計され、shRNAヘアピン構造のステム部分を形成する。

WPRE: ウッドチャック肝炎ウイルス転写後調節因子。パッケージング細胞のウイルスRNA安定性を増加させ、高ウイルスタイターを実現する。

CMV promoter: ヒトCMV immediate earlyプロモーター。マーカー遺伝子を普遍的に発現する。

Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)や視覚化用遺伝子(EGFPなど)、もしくはデュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。

3’LTR-ΔU3: HIV-1の3‘LTRのU3領域に欠損を起こしたもの。ウイルスベクター挿入過程で3' LTRが5' LTRを上書きするために、プロモーター不活性型の5' LTR-ΔU3が宿主ゲノムへ挿入される。3’LTR-ΔU3のポリアデニレーションシグナルはウイルスパッケージング中と宿主ゲノムに挿入後のすべての転写反応を停止させる。

SV40 early pA: SV40(Simian virus 40)のearlyポリアデニレーションシグナル。ウイルスパッケージング時の3' LTRによるウイルスRNA転写停止を補助する。パッケージング細胞でのウイルスRNAを増加させ高ウイルスタイターを実現する。

Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。

pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。

レンチウイルス マルチmiR30型shRNA ノックダウンベクター

 

RSV promoter: ラウス肉腫ウイルスプロモーター。ウイルスRNAを転写する。その後ウイルスRNAはウイルスにパッケージングされる。

5’LTR-ΔU3 : HIV-1の5‘LTR(long terminal repeat)に欠損を起こしたもの。レンチウイルス野生株の5‘LTRと3' LTRは相同配列をもつ。5‘LTRと3‘LTRはウイルスゲノムの両端に同じ向きで配置される。ウイルスゲノムの挿入過程に3‘LTRの配列は5‘LTRに上書きされる。LTRはプロモーターとポリアデニレーションシグナルの両方の機能があり、野生株では5‘LTRはウイルスゲノムを転写するプロモーターとして、3‘LTRは転写終了させるためのポリアデニレーションシグナルとして機能する。当社のベクターでは、5' LTR-ΔU3はウイルスの転写因子TatがLTRのプロモーターを活性化するために必要な配列が欠損している。しかしながら、5' LTR-ΔU3 上流のRSVプロモーターが代わりにプロモーターとして機能するため、この欠損はパッケージング時のウイルスRNAの生産に影響しない。

Ψ: ウイルスRNAのパッケージングに必要なHIV-1パッケージングシグナル。

RRE: HIV-1 Rev response element。ウイルスRNAのパッケージング時のRevタンパク質によるウイルスRNAの核外輸送に必要。

cPPT: HIV-1 Central polypurine tract。細胞感染中にウイルスゲノムの核内輸送を促進させるためのDNAフラップを形成する。ベクターの宿主ゲノムへの挿入効率を上昇させ、形質転換効率を高める。

Promoter: 下流の遺伝子とshRNAmiR をポリシストロンとして転写する。U6のようなRNA polymerase III ではなくRNA polymerase IIプロモーターが使われる。

Kozak: Kozak配列。真核生物での翻訳開始を促進すると考えられているためORFの開始コドンの前に配置される。

ORF: 任意の遺伝子もしくはレポーター遺伝子を配置する。shRNA発現モニタリングにも利用可能。

5' miR-30E: 最適化されたヒトmiR30 5’関連配列。shRNAプロセシングと成熟、そしてポリシストロンからの切断分離を促進する。

3' miR-30E: 最適化されたヒトmiR30 3’関連配列。shRNAプロセシングと成熟、そしてポリシストロンからの切断分離を促進する。

miR30-shRNA#1: ノックダウン標的配列(#1)から設計され、shRNAヘアピン構造のステム部分を形成する。

miR30-shRNA#2: ノックダウン標的配列(#2)から設計され、shRNAヘアピン構造のステム部分を形成する。

miR30-shRNA#3: ノックダウン標的配列(#3)から設計され、shRNAヘアピン構造のステム部分を形成する。

miR30-shRNA#4: ノックダウン標的配列(#4)から設計され、shRNAヘアピン構造のステム部分を形成する。

WPRE: ウッドチャック肝炎ウイルス転写後調節因子。パッケージング細胞のウイルスRNA安定性を増加させ、高ウイルスタイターを実現する。

CMV promoter: ヒトCMV immediate earlyプロモーター。マーカー遺伝子を普遍的に発現する。

Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)や視覚化用遺伝子(EGFPなど)、もしくはデュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。

3’LTR-ΔU3 : HIV-1の3‘LTRのU3領域に欠損を起こしたもの。ウイルスベクター挿入過程で3' LTRが5' LTRを上書きするために、プロモーター不活性型の5' LTR-ΔU3が宿主ゲノムへ挿入される。3’LTR-ΔU3 のポリアデニレーションシグナルはウイルスパッケージング中と宿主ゲノムに挿入後のすべての転写反応を停止させる。

SV40 early pA: SV40(Simian virus 40)のearlyポリアデニレーションシグナル。ウイルスパッケージング時の3' LTRによるウイルスRNA転写停止を補助する。パッケージング細胞でのウイルスRNAを増加させ高ウイルスタイターを実現する。

Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。

pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。