学会・展示会出展情報はこちら
期間限定・通年キャンペーン10-15%OFF

レンチウイルスCAR (キメラ抗原受容体)発現ベクター

概要

将来性のあるガン治療法として、キメラ抗原受容体(chimeric antigen receptor:CAR)を利用して腫瘍関連抗原を認識するT細胞(CAR-T細胞)を作製する方法が注目されています。CAR-T細胞療法は患者本人から採取されたT細胞(自家的)もしくは健康なドナーから採取されたT細胞(同種的)にCARを発現させ、抗原への結合によって腫瘍細胞を標的としてT細胞が活性化するように設計します。

Learn more >>

CARは4コンポーネントから構成されています。1) 細胞外抗原認識ドメイン。特異性が確認されているモノクローナル抗体由来の単鎖可変領域フラグメント(scFv)から構成される。scFvは抗原特異的モノクローナル抗体の可変領域の軽鎖と重鎖がリンカーペプチドで連結された構造をしている。2) 細胞外ヒンジ。scFVを膜貫通ドメインに連結してCARの安定性と柔軟性をもたらす。3) 膜貫通ドメイン。CARを細胞膜につなぎ留め、抗原結合ドメインと細胞内シグナルドメインの橋渡しをする。受容体の発現と安定性を高めるために重要な役割を果たす。4) 細胞内シグナルドメイン。T細胞受容体(TCR)のCD3-zetaドメイン由来でありITAMs(immunoreceptor tyrosine-based activation motifs)を内包している。ITAMsは抗原への結合とともにリン酸化されて下流シグナル伝達系を活性化してT細胞を活性化します。さらに細胞内シグナルドメインに複数の(CD28、CD137由来の)共刺激ドメインを加えることで、T細胞の増殖性と持続性を上昇させることができます。

CARは過去数年にわたる細胞内シグナルドメインの改良によって進化しています。第一世代CARはCD3-zeta シグナルドメインだけを持っていました。第一世代CARを発現するT細胞は活性化できるものの、細胞毒性と増殖率が低いためにin vivoでの抗腫瘍活性が貧弱でした。続いてCD3-zetaシグナルドメインに加えて共刺激ドメインを付加した第二世代CARの出現によって、CAR‐T細胞のin vivo増殖性、拡張性および持続性の大幅な改善をもたらしました。CD3-zetaドメインに加えて2つのシス共刺激ドメインを細胞内シグナルドメインに付加した第三世代CARは抗腫瘍活性をさらに改善しました。第二世代CARを基に開発された第四世代CARは恒常的もしくは誘導的にサイトカイン発現する様に改良した細胞内シグナルドメインをもちます。同様に第二世代CARを基に開発された第五および最新世代CARはサイトカイン受容体の細胞内シグナルドメインを組み込んでいます。

当社のレンチウイルスCAR発現ベクターはT細胞に第二世代CAR発現カセットを効果的に導入できます。レンチウイルスCAR発現ベクターはE.coli用プラスミドとして作製され、CAR発現カセット(scFV領域、ヒンジ、膜貫通ドメイン、細胞内CD3 zetaシグナルドメインと共刺激ドメインを含む)は2つのLTR(long terminal repeats)のあいだにクローニングされます。レンチウイルスCAR発現ベクターはヘルパープラスミドとともにパッケージング細胞に導入され、ベクター内のLTRのあいだのCAR発現カセットがウイルスRNAに転写されます。ヘルパープラスミドから発現したウイルスタンパク質群がウイルスRNAをウイルスにパッケージングします。こうして作られたウイルスは上清に放出され、直接もしくは濃縮した後に標的細胞への感染に用いられます。

ウイルスが標的細胞に感染するとRNAゲノムは細胞内に注入、そしてDNAに逆転写された後に宿主ゲノムへ挿入されます。こうしてLTRのあいだにあるCAR発現カセットとウイルスゲノムは宿主ゲノムへ挿入され、恒久的に維持されます。

当社のレンチウイルスCAR発現ベクターはウイルスのパッケージングや感染に必要になる遺伝子群が取り除かれています。これらの遺伝子はヘルパープラスミドから提供されます。レンチウイルスベクターによって生産されるウイルスは複製不能(細胞に感染はできるが複製はできない)なので安全です。

 

当ベクターシステムに関する詳細な情報ついては下記の論文を参照してください

References Topic
Br J Cancer. 120:26 (2019) Review on next-generation CAR T cells
Mol Ther Oncolytics. 3:16014 (2016) Review on CAR models
Sci Transl Med. 3: 95ra73 (2011) Lentivirus-mediated CAR expression for treating chronic lymphocytic leukemia
J Immunother. 32:689 (2009) Construction and pre-clinical evaluation of an anti-CD19 CAR
Mol Ther. 17:1453 (2009) In vivo characterization of chimeric receptors containing CD137 signal transduction domains
Show less

特長

当社のレンチウイルスCAR発現ベクターは第三世代レンチウイルスベクターを基に設計され、第二世代CAR発現カセットが組み込まれています。E.coliでの高コピー数複製、高タイターのウイルス作製、広範囲な細胞タイプへの高効率なウイルスの感染、宿主ゲノムへの遺伝子挿入および高レベルのCAR発現を実現します。

実験による検証

Validation of CAR-induced T-cell

 flow cytometry analysis for CAR CAR Jurkat cell activation

図1. CAR発現Jurkat細胞とCD19発現標的細胞(Ramos細胞)を用いた細胞表面のCD69発現上昇によるCAR誘導性T細胞活性化の検証。(A)レンチウイルスでCD19を標的とするCARをコードする遺伝子をJurkat細胞に導入し、CD19を発現するRamos細胞と共培養した。CD19が結合するとJurkat細胞は活性化され、それはCD69表面抗原の発現増加で示される。(B)共培養後、フローサイトメトリー解析を行い、CAR Jurkat細胞の活性化を評価した。CD19+ Ramos細胞(青)と共培養すると、CAR Jurkat細胞上のCD69の表面発現が劇的に増加し、これはCARを介したJurkat細胞の活性化は非常に強いことを示している。

実験による検証

Validation of CAR-induced T-cell

 flow cytometry analysis for CAR CAR Jurkat cell activation

図1. CAR発現Jurkat細胞とCD19発現標的細胞(Ramos細胞)を用いた細胞表面のCD69発現上昇によるCAR誘導性T細胞活性化の検証。(A)レンチウイルスでCD19を標的とするCARをコードする遺伝子をJurkat細胞に導入し、CD19を発現するRamos細胞と共培養した。CD19が結合するとJurkat細胞は活性化され、それはCD69表面抗原の発現増加で示される。(B)共培養後、フローサイトメトリー解析を行い、CAR Jurkat細胞の活性化を評価した。CD19+ Ramos細胞(青)と共培養すると、CAR Jurkat細胞上のCD69の表面発現が劇的に増加し、これはCARを介したJurkat細胞の活性化は非常に強いことを示している。

メリット

ベクターの恒久的な挿入: 従来の方法で宿主細胞へ導入されたベクターDNAは時間経過とともに失われてしまいます。この問題は増殖速度の速い細胞では特に顕著になります。一方でレンチウイルスベクターは宿主細胞への恒久的なDNA導入が可能なので、T細胞で長期間にわたるCAR発現が実現できます。

高ウイルスタイター:当社のベクターは非常に高いタイターのウイルスを作製できます(当社のウイルス作製サービスを利用すれば>108 TU/mlが可能)。このレベルのタイターならば適量のウイルス上清を使うことで100%近い遺伝子導入効率が得られます。

高い導入効率:レンチウイルスベクターはT細胞に対して高い遺伝子導入効率を持ちます。そのため、患者から得られる自家的T細胞の数が限られていても確実にCAR発現カセットを導入、増殖させて臨床輸液に必要なCAR-T細胞数を用意することができます。

プロモーターをカスタマイズ可能:当社ベクターの5'LTRのプロモーターはゲノム挿入時において自己不活性化されるように設計されています。そのため、実験目的に応じて任意のプロモーターを選択してCAR発現に使用できます。これは5'LTRの遍在的なプロモーター活性だけが利用可能となるMMLVレトロウイルスベクターに対して明らかな利点となります。

導入コピー数にばらつきが少ない:従来のプラスミドベクターによる遺伝子導入法は導入ベクターコピー数が細胞ごとに大きなばらつきが生じますが、一般的にウイルスによる遺伝子導入は導入ベクターコピー数が比較的に均一になります。

In vitroとin vivoで有効:レンチウイルスベクターは培養細胞と生体の両方に対して効果的です。

安全性:当ベクターの安全性はふたつの点から保証されます。ひとつめはウイルスのパッケージングと感染に必要な遺伝子群がヘルパープラスミドに移されていること、ふたつめは5' LTR-ΔU3はプロモーター活性をもたないので感染時にウイルスRNAが転写されません。そのために、複製可能なウイルスが発生する可能性はなく、当社のベクターを使用することによる健康へのリスクは最小限になります。

デメリット

組み込み可能なDNAサイズが限定的:野生株のレンチウイルスゲノムはおよそ9.2kbです。当社のベクター上でウイルスのパッケージング、感染に必要なコンポーネントに2.8kbが割り当てられ、およそ6.4kbを実験目的に利用できます。このサイズ上限を超えた場合、ウイルスタイターは劇的に減少します。通常、当社のベクターはCARのほかにプロモーター、薬剤耐性マーカー等が組み込まれます。もし総サイズが6.4kbを超えるならばウイルス生産に支障をきたします。

DNA挿入によるリスク:レンチウイルスベクターはゲノムへの挿入が起こるので、これを原因とする変異リスクが生じます。しかしながら、レンチウイルスベクターの転写開始サイト周辺やがん原遺伝子へ挿入される傾向は、レトロウイルスベクターと比較して低くなります。

技術的な複雑さ:レンチウイルスベクターはパッケージング細胞によるウイルス作製とタイターの正確な計測などの操作が必要になります。従来のプラスミドを使った遺伝子導入と比べてこれらは高い技術の習熟が必要となり、時間もかかります。

作成コストが高い:GMP(Good Manufacturing Practices)グレードのレンチウイルスベクターの作製コストは非常に高くなります。そのためレンチウイルスによるCAR-T細胞治療の臨床開発にかかわる主な障害となっています。

基本コンポーネント

CMVプロモーター:ヒト サイトメガロウイルス早期エンハンサー/プロモーター。パッケージング細胞内でのウイルスRNA転写を誘導する。ウイルスRNAは生ウイルス内に取り込まれる。

5’LTR-ΔU3: HIV-1の5‘LTR(long terminal repeat)に欠損を起こしたもの。レンチウイルス野生株の5‘LTRと3' LTRは相同配列をもつ。5‘LTRと3‘LTRはウイルスゲノムの両端に同じ向きで配置される。ウイルスゲノムの挿入過程に3‘LTRの配列は5‘LTRに上書きされる。LTRはプロモーターとポリアデニレーションシグナルの両方の機能があり、野生株では5‘LTRはウイルスゲノムを転写するプロモーターとして、3‘LTRは転写終了させるためのポリアデニレーションシグナルとして機能する。当社のベクターでは、5' LTR-ΔU3はウイルスの転写因子TatがLTRのプロモーターを活性化するために必要な配列が欠損している。しかしながら、5' LTR-ΔU3 上流のRSVプロモーターが代わりにプロモーターとして機能するため、この欠損はパッケージング時のウイルスRNAの生産に影響しない。

Ψ: ウイルスRNAのパッケージングに必要なHIV-1パッケージングシグナル。

RRE: HIV-1 Rev response element。ウイルスRNAのパッケージング時のRevタンパク質によるウイルスRNAの核外輸送に必要。

cPPT: HIV-1 Central polypurine tract。細胞感染中にウイルスゲノムの核内輸送を促進させるためのDNAフラップを形成する。ベクターの宿主ゲノムへの挿入効率を上昇させ、形質転換効率を高める。

Promoter:  CAR発現用プロモーター。

Kozak: Kozak配列。真核生物での翻訳開始を促進すると考えられているためORFの開始コドンの前に配置される。

CD8-leader: T細胞表面の糖タンパク質CD8 alphaドメインのシグナルペプチド。タンパク質のT細胞表面への輸送と局在に必要。

scFv: 特異性が確認されているモノクローナル抗体由来の単鎖可変領域フラグメント。抗原特異性にしたがって細胞を認識する。

Hinge: CARの細胞外ヒンジ領域。scFVと膜貫通ドメインを連結して、CARタンパク質発現と機能の安定性と柔軟性をもたらす。

Transmembrane domain: CARの膜貫通ドメイン。CARを細胞膜につなぎ留め、抗原結合ドメインと細胞内シグナルドメインの橋渡しをする。受容体の発現と安定性を高める。

Costimulatory domain: CARの共刺激ドメイン。CAR-T細胞の生存率、増殖率および活性化状態の持続性を上昇させる。

CD3zeta: T細胞受容体のCD3ζ鎖。T細胞による免疫反応を活性化する。

WPRE: ウッドチャック肝炎ウイルス転写後調節因子。パッケージング細胞のウイルスRNA安定性を増加させ、高ウイルスタイターを実現する。

mPGK promoter: マウスphosphoglycerate kinase 1 遺伝子プロモーター。下流のマーカー遺伝子を遍在的に発現する。

Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)や視覚化用遺伝子(EGFPなど)、もしくはデュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。

3’LTR-ΔU3 : HIV-1の3‘LTRのU3領域に欠損を起こしたもの。ウイルスベクター挿入過程で3' LTRが5' LTRを上書きするために、プロモーター不活性型の5' LTR-ΔU3が宿主ゲノムへ挿入される。3’LTR-ΔU3のポリアデニレーションシグナルはウイルスパッケージング中と宿主ゲノムに挿入後のすべての転写反応を停止させる。

SV40 early pA: SV40(Simian virus 40)のearlyポリアデニレーションシグナル。ウイルスパッケージング時の3' LTRによるウイルスRNA転写停止を補助する。パッケージング細胞でのウイルスRNAを増加させ高ウイルスタイターを実現する。

Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。

pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。

マイベクターをデザインする  デザインサポートを依頼する