アデノウイルスNon-Coding RNA発現ベクター

概要

アデノウイルスnon-coding RNA発現ベクターは複数の哺乳類動物細胞タイプにnon-coding RNA発現カセットを効率的に導入できます。Non-coding RNAは多種のshort(30塩基以下)もしくはlong(200塩基以上)機能性RNA分子を含みます。micro RNAs (miRNAs)、small interfering RNAs (siRNAs)、piwi-interacting RNAs (piRNAs)、small nuclear RNAs (snRNAs)、small nucleolar RNAs (snoRNAs)、large intergenic non-coding RNAs (lincRNAs)、intronic long non-coding RNAs (intronic lncRNAs)、natural antisense transcripts (NATs)、enhancer RNAs (eRNAs) 、 promoter-associated RNAs (PARs)などの機能性non-coding RNAがあります。これらはタンパク質に翻訳されることはありませんが、DNA複製、エピジェネティック制御、転写および転写後制御そして翻訳制御など数多くの細胞内機構で重要な役割を担っています。

アデノウイルスnon-coding RNA発現ベクターはRNAポリメラーゼⅡプロモーターを使用してnon-coding RNAを発現するように設計されているので、組織特異的、誘導性もしくは様々な活性強度を持つプロモーターを使用した多様な実験用途に対応できます。RNAポリメラーゼⅡプロモーターによる転写反応はプロモーターの3‘域から始まり、ポリAシグナル配列内で終了します。そのため、当ベクターから生産されるnon-coding RNAとオリジナルのnon-coding RNAの配列は正確に一致せず、上流と下流にいくつかの配列が追加されます。

アデノウイルスnon-coding RNA発現ベクターはE.coliプラスミドとして作製されます。non-coding RNAと上流のプロモーターはITR(inverted terminal repeats)のあいだにクローニングされます。次にベクターはパッケージング細胞に導入され、ITRのあいだのDNA領域がウイルスにパッケージングされます。

ウイルスが標的細胞に感染すると、ウイルスゲノムは細胞核内に侵入して宿主ゲノムへ挿入されることなくエピソームDNAとして維持されます。こうしてITRのあいだにクローニングされたnon-coding RNA発現カセットは標的細胞に導入されます。

アデノウイルスベクター上のアデノウイルス5型ゲノム(Ad5)はE1A、E1B、E3遺伝子を欠損しています(E1AとE1Bはウイルスの複製に必要)。その代わりにE1AとE1B遺伝子はパッケージング細胞に組み込まれています。そのため、当社のアデノウイルスベクターから作られるウイルスは複製不能(宿主細胞へ遺伝子の導入はできるが複製できない)であり、安全性が保障されています。

 

当ベクターシステムに関する詳細な情報ついては下記の論文を参照してください

References Topic
Cell. 157:77 (2014) Review on non-coding RNAs
Front Genet. 6:2 (2015) Review on functionality of non-coding RNAs
Cell Rep. 14:1867 (2016) Adenovirus-mediated expression of long non-coding RNA
Proc Natl Acad Sci U S A. 91:8802 (1994) The 2nd generation adenovirus vectors
J Gen Virol. 36:59 (1977) A packaging cell line for adenovirus vectors
J Virol. 79:5437 (2005) Replication-competent adenovirus (RCA) formation in 293 Cells
Gene Ther. 3:75 (1996) A cell line for testing RCA

特長

当社のアデノウイルスnon-coding RNA発現ベクターはアデノウイルス5型(Ad5)を基に開発されています。E.coliでの高コピー数複製、高タイターのウイルス作製、広範な細胞タイプへの高い遺伝子導入効率および宿主ゲノムへの挿入効率を実現します。

メリット

宿主ゲノムの損傷リスクが低い:宿主細胞に感染したアデノウイルスベクターは細胞核内でエピソームDNAとして維持されます。ゲノムへの挿入が起こらないために、ゲノムの損傷よる癌化の可能性が低く、ヒト生体に使用する用途に適しています。

非常に高いウイルスタイター: アデノウイルスベクターをパッケージング細胞に導入して作製したウイルスをパッケージング細胞に再感染させることでウイルスを増幅して非常に高いタイターを得られます。このような増幅はレンチウイルス、MMLVレトロウイルス、AAVなどではできません。当社のアデノウイルス作製サービスを利用していただければ、1011 PFU/ml(plaque-forming unit per ml)以上のタイターを得ることができます。

幅広い親和性:ヒト、マウス、ラットなどの哺乳類動物由来の細胞に遺伝子を導入できます。ただし、いくつかの細胞タイプへの遺伝子導入は困難であることが知られています。

組み込み可能なDNAサイズが大きい:アデノウイルスゲノムのサイズ上限は5' ITRから3' ITRまでのあいだで38.7kbです。アデノウイルスの遺伝子発現などに必要なバックボーン部分を除くとおよそ7.5kbのDNA配列(non-coding RNAのほかにプロモーター、蛍光マーカー等を含む)を当社のベクターに組み込むことができます。レンチウイルスの組み込み可能サイズである6.4kbと比べて大きく、ほとんどの用途に十分なサイズとなります。

In vitroとin vivoで有効:レンチウイルスベクターは培養細胞と生体の両方に対して効果的です。

安全性:当ベクターからはウイルス作製に必須の遺伝子が取り除かれているため(それらの遺伝子はパッケージング細胞のゲノムに組み込まれています)、当ベクターから作られるウイルスは複製不能であり安全です。

デメリット

ベクターDNAがゲノムに挿入されない:アデノウイルスゲノムは宿主のゲノムに挿入されずにエピソームDNAとして維持されます。そのため、エピソームDNAは時間経過とともに失われます。特に増殖細胞では顕著になります。

特定の細胞タイプへの遺伝子導入が困難:アデノウイルスベクターは非増殖細胞を含む数多くの細胞タイプへの遺伝子導入が可能ですが、特定の細胞タイプ(内皮細胞、平滑筋、気道上皮細胞、末梢血細胞、神経細胞、造血細胞など)に対する導入効率は低くなります。

強い免疫原性: アデノウイルスベクターから作成されたウイルスは動物生体内で強い免疫反応を引き起こすことがあるので、特定のin vivo用途には制限があります。

技術的な複雑さ:アデノウイルスベクターはパッケージング細胞によるウイルス作製とタイターの正確な計測などの操作が必要になります。従来のプラスミドを使った遺伝子導入と比べてこれらは高い技術の習熟が必要となり、時間もかかります。

基本コンポーネント

5' ITR: 5' inverted terminal repeat. 野生株の5' ITR と3' ITRは基本的に同じ配列を持つ。ウイルスゲノムの両端に逆向きに配置され、ウイルスゲノムの複製起点として機能する。

Ψ: アデノウイルスゲノムDNAのパッケージングシグナル。

Promoter:  任意のnon-coding RNA発現用プロモーター。

Non-coding RNA: 実験に使用するnon-coding RNA。

BGH pA: ウシ成長因子ポリアデニレーションシグナル。non-coding RNAの転写を停止する。

hPGK promoter: ヒトphosphoglycerate kinase 1 遺伝子プロモーター。下流のマーカー遺伝子を遍在的に発現する。

Marker:視覚化用遺伝子(EGFPなど)。ベクターが導入された細胞を可視化する。

TK pA: 単純ヘルペスウイルスのチミジンキナーゼのポリアデニレーションシグナル。上流マーカー遺伝子の転写を停止する。

ΔAd5: アデノウイルス5型(Ad5)ゲノム。E1A、E1B、E3領域が欠損している。

3' ITR: 3' inverted terminal repeat.

pBR322 ori: pBR322複製起点。E.coliでプラスミドを中コピー数で維持する。

Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。

マイベクターをデザインする  デザインサポートを依頼する