Vector Systems
AAV SagRNA発現ベクター
概要
CRISPR/Cas9ベクターは新しく開発されたゲノム編集ツールのひとつで、素早く効率的にゲノムの標的DNA配列に変異を導入できます(同様にZFNやTALENなどもよく利用されます)。
Cas9はRNA誘導性DNAヌクレアーゼの一種で、プラスミドやバクテリオファージなど外来遺伝子の侵入を防ぐ原生生物の自然免疫システムの一部です。Cas9は18‐22ntの標的配列と配列特異的な相互作用をするガイドRNA(gRNA)と複合体を形成します。gRNAの標的配列へのハイブリダイゼーションによってCas9はゲノムの標的配列を切断します。
CRISPRによる遺伝子ターゲティングには細胞内で標的配列特異的なgRNAとCas9が共発現している必要があります。Cas9とgRNAをひとつのベクター(all-in-oneベクター)から発現させるか、Cas9とgRNAをそれぞれ独立したベクターから発現させることによって共発現が可能になります。Cas9とgRNAの発現に独立したベクターを使うメリットは、実験目的に応じて様々なgRNAとCas9(野生株Cas9、ニッケース、不活性型Cas9など)を柔軟に組み合わせて使用できる点です。
当社のAAV SagRNA発現ベクターはStaphylococcus aureus由来のSaCas9を利用しています。SaCas9は従来のStreptococcus pyogenes由来のSpCas9よりも1kb以上小さい遺伝子サイズを持ちます。AAVベクターは組み込み可能なDNAサイズが限定されるので、遺伝子サイズが大きいSpCas9よりもSaCas9の方が適しています。SaCas9とSpCas9はgRNAのscafold配列に違いがあります。SaCas9に対応しているgRNAはSagRNAと呼ばれます。またSaCas9のPAMはNNGRR(NNGRRTのほうが好ましい)であり、SpCas9のPAMがNGGまたはNAGである点も異なります。
当社のAAV SagRNA発現ベクターは実験目的に応じてシングルSagRNA発現用とデュアルSagRNA発現用のどちらかを選択できます。シングルSagRNA発現ベクターはSagRNA発現用のヒトU6プロモーターをひとつ、デュアルSagRNA発現ベクターはふたつ持ちます。シングルSagRNA発現ベクターは遺伝子ノックアウトなどの従来のCRISPRゲノム編集用途に利用され、デュアルSagRNA発現ベクターは対となるゲノムサイトを同時に標的とする必要がある用途に利用されます。使用用途としては、対となるSagRNAペアを利用して2ヵ所のDSBを作り出し、そのあいだの配列の欠失を作り出すことや、2つの遺伝子を同時に標的にすることができます。
AAV SagRNA発現ベクターはE.coliのプラスミドとして作製されています。AAV SagRNA発現ベクターがヘルパープラスミドと共にパッケージング細胞に導入されると、ITRのあいだのDNA領域がウイルスとしてパッケージングされます。ウイルスが標的細胞に感染するとSagRNA発現カセットはウイルスゲノムと一緒に細胞内に導入されます。SagRNAはヒトU6プロモーターから発現されてSaCas9を標的ゲノムサイトへ誘導します。
AAV野生株のゲノムはssAAVと呼ばれる、線状の一本鎖DNA(ssDNA)であり、両端にヘアピン構造を持つITRを持ちます。ssAAV上の遺伝子が発現するためにはまず、2つの経路によって二本鎖DNAに変換される必要があります。1)DNAポリメラーゼがssDNAゲノムをテンプレート、3' ITRを複製開始サイトとして相補鎖を複製する。2)ssAAVゲノムのあいだで+鎖と-鎖のあいだの分子間ハイブリダイゼーションによって2本鎖DNAを作り出す。二本鎖DNAへの変換は主に1)の経路によってなされます
AAVゲノムDNAは宿主細胞の核内で連結した(コンカテマー)エピソームDNAとして維持されます。エピソームDNAは宿主ゲノム内で複製されないので、AAVゲノムは非増殖細胞では宿主細胞内で維持されますが、増殖細胞では細胞分裂によって希釈されて最終的には消失します。AAVゲノムが宿主ゲノムに挿入されることは非常に稀です。それゆえベクターの挿入によって細胞が癌化する懸念がないのでAAV SagRNA発現ベクターは遺伝子治療などの用途に適しています。
AVVは複製不能でヒトに対して炎症反応などの疾患の原因にほとんどならないために、バイオセーフティレベル1の施設で扱うことができるために非常に実用性が高いシステムです。さらに、その抗原性の低さから当社のAAV SagRNA発現ベクターはin vivoでCRISPRを使用する用途に最適です。
自然界から単離された複数のAAV株は、ウイルス表面のカプシドタンパク質の抗原性に基づいた血清型で分類できます。血清型によってウイルスの親和性(感染の組織特異性)が変わります。AAVベクターをパッケージングする際には異なるカプシドタンパク質を選択することでウイルスの血清型を変更することができます。当社が提供する血清型は1, 2, 3, 4, 5, 6, 6.2, 7, 8, 9, rh10, DJ, DJ/8, PHP.eB, PHP.S, AAV2-retro and AAV2-QuadYFとなります。クローニングの際、特異性に影響を与えないためにこの分野では一般的であるAAV2由来のITRが使用されています。パッケージング用のヘルパープラスミドにはRep/Capプラスミドがあり、AAV2由来の複製遺伝子と選択した血清型のカプシドタンパク質を含み、指向性を決定します。AAVの血清型と組織親和性の対応については下記の表をご覧ください。
セロタイプ別
組織別
Serotype | Tissue tropism |
---|---|
AAV1 | 平滑筋, 骨格筋, 中枢神経系, 脳, 肺, 網膜, 内耳, 膵臓, 心臓, 肝臓 |
AAV2 | 平滑筋, 中枢神経系, 脳, 肝臓, 膵臓, 腎臓, 網膜, 内耳, 精巣 |
AAV3 | 平滑筋, 肝臓, 肺 |
AAV4 | 中枢神経系, 網膜, 肺, 腎臓, 心臓 |
AAV5 | 平滑筋, 中枢神経系, 脳, 肺, 網膜, 心臓 |
AAV6 | 平滑筋, 心臓, 肺, 膵臓, 脂肪, 肝臓 |
AAV6.2 | 肺, 肝臓, 内耳 |
AAV7 | 平滑筋, 網膜, 中枢神経系, 脳, 肝臓 |
AAV8 | 平滑筋, 中枢神経系, 脳, 網膜, 内耳, 肝臓, 膵臓, 心臓, 腎臓, 脂肪 |
AAV9 | 平滑筋, 骨格筋, 肺, 肝臓, 心臓, 膵臓, 中枢神経系, 網膜, 内耳, 精巣, 肝臓, 脂肪 |
AAVrh10 | 平滑筋, 肺, 肝臓, 心臓, 膵臓, 中枢神経系, 網膜, 腎臓 |
AAV-DJ | 肝臓, 心臓, 腎臓, 脾臓 |
AAV-DJ/8 | 肝臓, 脳, 腎臓, 脾臓 |
AAV-PHP.eB | 中枢神経系 |
AAV-PHP.S | 末梢神経系 |
AAV2-retro | 脊髄神経 |
AAV2-QuadYF | 内皮細胞, 網膜 |
AAV2.7m8 | 網膜, 内耳 |
Tissue type | Recommended AAV serotypes |
---|---|
平滑筋 | AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh10 |
骨格筋 | AAV1, AAV9 |
中枢神経系 | AAV1, AAV2, AAV4, AAV5, AAV7, AAV8, AAV9, AAVrh10, AAV-PHP.eB |
末梢神経系 | AAV-PHP.S |
脳 | AAV1, AAV2, AAV5, AAV7, AAV8, AAV-DJ/8 |
網膜 | AAV1, AAV2, AAV4, AAV5, AAV7, AAV8, AAV9, AAVrh10, AAV2-QuadYF, AAV2.7m8 |
内耳 | AAV1, AAV2, AAV6.2, AAV8, AAV9, AAV2.7m8 |
肺 | AAV1, AAV3, AAV4, AAV5, AAV6, AAV6.2, AAV9, AAVrh10 |
肝臓 | AAV1, AAV2, AAV3, AAV6, AAV6.2, AAV7, AAV8, AAV9, AAVrh10, AAV-DJ, AAV-DJ/8 |
膵臓 | AAV1, AAV2, AAV6, AAV8, AAV9, AAVrh10 |
心臓 | AAV1, AAV4, AAV5, AAV6, AAV8, AAV9, AAVrh10, AAV-DJ |
腎臓 | AAV2, AAV4, AAV8, AAV9, AAVrh10, AAV-DJ, AAV-DJ/8 |
脂肪 | AAV6, AAV8, AAV9 |
精巣 | AAV2, AAV9 |
脾臓 | AAV-DJ, AAV-DJ/8 |
脊椎神経 | AAV2-retro |
内皮細胞 | AAV2-QuadYF |
当ベクターシステムに関する詳細な情報ついては下記の論文を参照してください
References | Topic |
---|---|
Science. 339:819 (2013) | Description of genome editing using the CRISPR/Cas9 system |
Genome Biol. 16:257 (2015) | Characterization of Staphylococcus aureus Cas9 |
Nature. 520:186 (2015) | In vivo genome editing with SaCas9-based AAV vectors |
Plos One. 12: e0187236 (2017) | CRISPR/Cas9 vectors for dual gRNA expression |
特長
当社のAAVベクターシステムはE.coliでの高コピー数複製、高タイターのウイルス作製、広範囲な細胞タイプへの高効率な導入および導入遺伝子の高い発現量を実現します。AAVベクターは高い安全性とパッケージング時にすべてのカプシドタンパク質の血清型を選択できるため、非常に高効率な遺伝子導入を実現できます。
メリット
SaCas9 CRISPR用途に適している: 当社のAAV SagRNA発現ベクターはStreptococcus pyogenes由来のSpCas9よりも遺伝子サイズが1kb以上小さいStaphylococcus aureus由来のSaCas9を利用しています。組み込み可能なDNAサイズが限定されるAAVベクターでは遺伝子サイズが大きいSpCas9よりもSaCas9の方が適しています。
安全性: AAVは複製不能であり、ヒトの疾患の原因とならないので、最も安全なウイルスベクターシステムです。
宿主ゲノムの損傷リスクが低い: 宿主細胞への導入後、AAVベクターはエピソームDNAとして細胞核に存在します。宿主ゲノムへの挿入が起こらないので癌化の原因となりうる宿主ゲノムの損傷リスクを減らすことができ、ヒトへのin vivo用途に適しています。
高ウイルスタイター:当社のAAVベクターは高いタイターのウイルスを作製できます。当社のウイルス作製サービスを利用すれば1013 GC/ml(genome copy per ml)以上が可能です。
幅広い親和性:適切な血清型でウイルスを作製することによってヒト、マウス、ラットなど一般的に使用される哺乳類動物由来の幅広い細胞及び組織タイプに遺伝子を導入できます。ただし、血清型によっては遺伝子導入が難しい細胞タイプがあります。
In vitroとin vivoで有効:培養細胞と生体内の細胞に対しても使用できます。
デメリット
特定の細胞タイプへの遺伝子導入が困難:AVVベクターは適切な血清型を選択することで非増殖細胞を含む数多くの細胞タイプへの遺伝子導入が可能になります。それぞれの血清型は異なる組織親和性がありますが、どの血清型を使っても遺伝子導入が難しい細胞タイプも存在します。
技術的な複雑さ:AVVベクターはパッケージング細胞によるウイルス作製とタイターの正確な計測などの操作が必要になります。従来のプラスミドを使った遺伝子導入と比べてこれらは高い技術の習熟が必要となり、時間もかかります。
PAMが必要:CRISPR/Cas9システムはSagRNA認識配列の3’末端のすぐ隣にPAMと呼ばれる配列が必要です。SaCas9によるCRISPRターゲティングにはPAMとしてNNGRR(NNGRRTのほうが好ましい)がSagRNAの標的配列3‘末端の直後に必要になります。
基本コンポーネント
AAVシングルSagRNA発現ベクター
5' ITR: 5' inverted terminal repeat. 野生株の5' ITR と3' ITRは基本的に同じ配列を持つ。ウイルスゲノムの両端に逆向きに配置され、ウイルスゲノムの複製起点として機能する。
U6 promoter: ヒトU6 snRNAのプロモーター。small RNAの転写をするRNAポリメラーゼIIIによってSagRNAを高レベルで発現する。
SagRNA: Staphylococcus aureus由来のSaCas9に対応するgRNA
Terminator: SagRNAの転写を停止する。
CMV promoter: ヒトCMV immediate earlyプロモーター。SaCas9遺伝子を普遍的に発現する。
Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)、視覚化用遺伝子(EGFPなど)、デュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。
SV40 late pA: SV40(Simian virus 40)のlateポリアデニレーションシグナル。上流Cas9の転写を停止する。
3' ITR: 3' inverted terminal repeat。
Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。
pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。
AAVデュアルSagRNA発現ベクター
5' ITR: 5' inverted terminal repeat. 野生株の5' ITR と3' ITRは基本的に同じ配列を持つ。ウイルスゲノムの両端に逆向きに配置され、ウイルスゲノムの複製起点として機能する。
U6 promoter: ヒトU6 snRNAのプロモーター。small RNAの転写をするRNAポリメラーゼIIIによってSagRNAを高レベルで発現する。
SagRNA #1: Staphylococcus aureus由来のSaCas9に対応するgRNA#1。
SagRNA #2: Staphylococcus aureus由来のSaCas9に対応するgRNA#2。
Terminator: SagRNAの転写を停止する。
CMV promoter: ヒトCMV immediate earlyプロモーター。SaCas9遺伝子を普遍的に発現する。
Marker: 薬剤選択用遺伝子(ネオマイシン耐性など)、視覚化用遺伝子(EGFPなど)、デュアルレポーター遺伝子(EGFP/Neoなど)。ベクターが導入された細胞の薬剤選択もしくは可視化を可能にする。
SV40 late pA: SV40(Simian virus 40)のlateポリアデニレーションシグナル。上流Cas9の転写を停止する。
3' ITR: 3' inverted terminal repeat。
Ampicillin: アンピシリン耐性遺伝子。 E.coliへのアンピシリン耐性によるプラスミドの維持を可能にする。
pUC ori: pUC複製起点。E.coliでプラスミドを高コピーで維持する。